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1.  Introduction 

Superresolution research has been conducted for many decades, both to develop ways to achieve superresolution and 
to characterize the properties of superresolution (see Refs.[1], [2], [3], and the references therein).  In the research 
literature, the term “superresolution” is commonly used to describe the reduction in the point spread function (PSF) 
width in image-domain intensities as a result of applying some sort of processing methodology when compared to the 
PSF width in the corresponding unprocessed intensities.  This definition results from the classical concept of 
resolution as proposed by Lord Rayleigh in which the resolution of a system is related to the minimum separation of 
two points that can be resolved.  PSF width reduction can occur as the result of two different phenomena, either 
separately or in combination.  The first phenomena is an increase in the Fourier amplitudes of the image-domain 
intensities within the measurement bandwidth.  The Fourier amplitudes can be increased by postprocessing techniques 
or by including appropriate phase and/or amplitude pupil-plane filters in the optical system.  This latter approach is 
often referred to as “optical superresolution” and is useful when a narrow pre-detection PSF is desired as is the case, 



for example, for optical disk readout [4] or for real-time resolution increase in adaptive optics data [5].  The second 
phenomena is the extrapolation of the measured Fourier data outside of the measurement bandwidth.  By its very 
nature, only postprocessing can accomplish this second type of superresolution, and thus the term “superresolution by 
data inversion” has been coined to describe this type of superresolution [1].  The superresolution we explore in this 
paper is superresolution by data inversion. 

There are two schools of thought on superresolution by data inversion, hereafter referred to simply as 
superresolution.  The first is that meaningful superresolution (defined as accurate extrapolation of the measured data 
more than an incremental amount beyond the measurement bandwidth for measured data with space-bandwidth 
products (SBPs) τ 10 and realistic signal-to-noise ratios (SNRs)) is unachievable.  The definition of SBP will be given 
in Section 2.  This belief is based upon signal-to-noise analyses carried out under the assumption that the object of 
interest has finite support in the image domain [1], [6], where the support of an object is the region in the image 
domain outside of which the object’s intensities are zero.  The second school of thought is that meaningful 
superresolution is possible.  This belief is based on the appearance of structure in the Fourier spectra of postprocessed 
imagery outside of the measurement bandwidth that appears to be correlated with the Fourier structure of the true 
object [3], [7]. 

In this paper, we resolve this apparent paradox by analyzing the Fourier- and image-domain properties of 
superresolved spectra for finite-support objects.  This analysis is carried out by first decomposing the superresolved 
spectrum into primary and secondary superresolution components.  We define primary superresolution as that portion 
of the superresolved spectrum that can be estimated in an essentially unbiased manner given the data SNRs and define 
secondary superresolution as the remainder of the superresolved spectrum.  The phrase “essentially unbiased” will be 
explained and quantified in Section 4.  We then show that the inclusion of the primary superresolution component of 
the superresolved spectrum in an image reconstruction produces a space-invariant but minimal increase in spatial 
resolution.  When both the primary and secondary components of the superresolved spectrum are included in the 
image reconstruction process, the increase in spatial resolution, averaged over the support region, is greater than that 
achieved using just the primary superresolution component, but is still minimal.  However, we show that the increase 
in spatial resolution due to secondary superresolution is space variant.  The space-variant property is the key to 
resolving the disagreement between the two schools of thought.  In particular, we show that the first school of thought 
is correct when considering the average increase in resolution across the support region, while the second school of 
thought is correct when considering the space-variant increase in resolution.  Specifically, we will show that there is a 
non-negligible increase in spatial resolution near the edges of the support region. 

The analysis in this paper is carried out in the context of achieving superresolution in the estimate of a 1-D 
support-constrained object, where the measured data is contained in a low-pass region of the Fourier domain.  This 
problem formulation is particularly convenient because the inverse problem can be expressed analytically.  In Section 
2, we look at the inverse problem and characterize it in terms of its eigenvectors and eigenvalues.  In Section 3, we 
analyze superresolution using the algorithm-independent Cramér-Rao lower bound (CRB) approach.  The CRB 
analysis indicates that any unbiased estimate of the object’s Fourier spectrum at any frequency outside the 
measurement bandwidth has an infinite variance.  For this reason, in Section 4, the superresolution analysis is 
approached in terms of the eigenvector/eigenvalue expansion of the inverse problem where only a finite number of 
terms are included in order to keep the estimator variances finite.  The bias properties of the superresolved spectrum 
are then explored as a function of the amount of extrapolation and the number of terms included in the expansion.  
From this analysis comes the decomposition of superresolved spectra into primary and secondary superresolution 
components.  Additionally, in Section 4, properties of primary superresolution are described.  In Section 5, properties 
of secondary superresolution are given.  Finally, conclusions and future work are presented in Section 6. 

2.  Forward and inverse models 

In this section, equations for the forward and inverse problems are given.  Particular attention is placed upon an 
eigenvector/eigenvalue expansion of the inverse problem in the Fourier domain.  Properties of these eigenfunctions 
and eigenvalues are presented in order to gain insight into the properties of the variances of unbiased estimates of the 
object’s Fourier spectrum.  An expression is given for these variances in terms of an infinite summation involving the 
eigenfunctions and eigenvalues and it is shown that the variances of the superresolved spectrum appear to be infinite. 
 Due to the lack of closed-form expressions for the eigenvectors, however, conclusive statements are not possible.  
This motivates the CRB approach developed in Section 3. 

The forward model describing the functional dependence of the image i(x) on the noise-free object o(x) with 
support [-xo,xo], the system PSF h(x), and the additive noise n(x), is given by 

                                                 ( ) ( ) ( ) )x(ndoxhxi +ααα−= ∫
∞

∞−

, (1) 

where h(x) is the inverse Fourier transform of an ideal low-pass filter with a cutoff frequency of fo (in cycles/unit 
length) and n(x) is stationary zero-mean Gaussian noise with variance σ [6], [8].  It is straightforward to generalize 
this forward model to include other PSFs and noise models, but this simple and oft-used image model is chosen for 
purposes of clarity.  The eigenfunctions of this forward model are the celebrated prolate spheroidal wave functions 
(PSWFs) of Slepian, Pollack, and Landau [9], [10], and are a function of the space-bandwidth product (SBP) 4xofo 
[8].  These eigenfunctions and their associated eigenvalues can be used to rewrite Eq.(1) in a form that permits 



solving for o(x) in terms of the measured data i(x).  Although o(x) can be estimated from ‘raw’ values of i(x), lower-
noise estimates of o(x) can be obtained if only the portion of i(x) associated with data inside the measurement 
bandwidth is included in the estimation process [11].  We follow this latter approach for our results but carry out the 
calculations in the Fourier domain to facilitate analysis of the superresolved spectra. 

To continue, we write the inverse problem in terms of an eigenvalue/eigenvector expansion of the Fourier 
transform I(f) of the measured data i(x).  The expansion can be written in terms of the true object spectrum O(f) and 
the Fourier transform of the noise N(f) since I(f) = O(f) + N(f).  The desired estimator expression is given by 
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where Oe(f) is the estimated (and superresolved) Fourier spectrum.  By restricting the integration limits in Eq.(2) to 
±fo, only the signal-bearing portion of I(f) is included in the estimate of O(f).  For this reason, the estimator in Eq.(2) 
has the same noise properties as the image-domain estimator proposed in [11].  The PSWFs ( ){ }xmϕ  of Eq.(2) are 
scaled versions of the eigenfunctions of the forward model and their associated eigenvalues {λm} are their energies 
inside the measurement bandwidth [9].  Although, strictly speaking, the PSWFs in Eq.(2) are defined only on [-fo,fo], 
they are analytic functions and can be extended to (-∞,∞).  In the following analysis, this extension is assumed to 
have occurred.  Because ( )fmϕ  is non-zero almost everywhere for each value of m, M in Eq.(2) must be set to 
infinity to obtain an unbiased estimate of Oe(f) at any frequency, in general.  Although any practical application can 
include only a finite number of terms, analyzing the infinite-summation case is important because it provides insight 
into the SNR properties of unbiased estimates.  From Eq.(2), it is easily seen that the expected value of Oe(f) for M=∞ 
is just the true object spectrum.  To obtain the SNRs of Oe(f) at any frequency, an expression for the variances of 
Oe(f) are needed and can be obtained in a straightforward manner from Eq.(2), yielding 
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The standard imaging definition of SNR is the expected value of the estimated quantity divided by the square root of 
its variance [12].  It can be seen from Eqs.(2) and (3) that the SNRs of Oe(f) depend on the properties of the PSWFs 
and their eigenvalues.  For these reasons, these properties are explored next. 

In general, PSWFs for any value of the SBP have similar properties when appropriately normalized.  For 
example, any PSWF whose index satisfies mδSBP has most of its energy inside the measurement bandwidth.  Most of 
the energy of any PSWF whose index satisfies mτSBP is outside the measurement bandwidth.  We call every PSWF 
whose index satisfies mτSBP a superresolving PSWF for this reason.  To gain insight into additional properties of 
PSWFs, it is useful to look at a representative set of PSWFs as a function of frequency and index value.  Using the 
method of Latham and Tilton [13], for any SBP we are able to generate PSWFs and their eigenvalues quickly and 
accurately down to λm≈10-30. 

Figure 1 is a movie displaying PSWFs as a function of their index for a SBP of 40.  These PSWFs were 
generated in a 1024 element array of which 256 elements were in the measurement bandwidth.  Their associated 
eigenvalues are plotted in Fig. 2.  In addition to the energy properties described in the previous paragraph, notice that 
the superresolving PSWFs become essentially decaying sinusoids whose starting locations fm in frequency space 
monotonically increases as a function of m.  This implies that the energies of the superresolving PSWFs become 
increasingly concentrated at higher and higher frequencies.  Recall, however, that the energy of any PSWF inside the 
measurement bandwidth is equal to its eigenvalue;  thus, from Fig. 2, it is clear that every PSWF has non-zero energy 
inside the  

 



Fig. 1.  A movie of PSWF Fourier amplitudes plotted as a function of frequency for a SBP of 40.  The frequency axis is 
normalized to one at the edge of the measurement bandwidth.  Each movie frame corresponds to a PSWF for the PSWF index 
indicated in the movie. 

 

measurement bandwidth.  As a result, noise-free knowledge of the true object’s Fourier spectrum inside the 
measurement bandwidth permits superresolving this knowledge to all frequencies. 

The primary difference in the properties of PSWFs and their eigenvalues as the SBP is varied is the decay rate of 
the eigenvalues.  When this difference impacts the properties of primary and secondary superresolution, it will be 
called out.  Otherwise, results described here apply to PSWFs for any SBP value. 

Returning now to the analysis of the SNRs of Oe(f) for all frequencies when M = ∞, recall that the expected value 
of Oe(f) is just the true object spectrum.  Therefore, for the SNRs to remain finite, var{Oe(f)} must remain finite.  
From. Eq.(3), it can be seen that the question of whether or not var{Oe(f)} is finite for any frequency is determined by 
the index dependence of the ratio ( ) m

2
m /f λϕ .  From Fig. 1, it can be seen that ( ) 0f2

m →ϕ  as m → ∞ for any 
frequency f, and from Fig. 2 that 0m →λ  as m → ∞.  As a result, their relative rates of convergence to zero 
determine whether or not var{Oe(f)} remains finite.  Because there does not exist an analytical expression for ( )fmϕ , 
Eq.(3) cannot be used to definitively answer this   

 
Fig. 2.  A plot of the PSWF eigenvalues associated with the PSWFs in Fig. 1. 

 
Fig. 3.  A movie of the Fourier variances defined by Eq.(3) for a SBP of 40 plotted as a function of frequency normalized to 
one at the edge of the measurement bandwidth.  Each movie frame corresponds to increasing the finite summation limit in 
Eq.(3) by one.  The plots on the left are for all frequencies included in the calculations, while the plots on the right are a 
magnified version of the plots on the left for frequencies within the measurement bandwidth. 

 

question.  However, we can use the PSWFs and eigenvalues calculated for Figs. 1 and 2 to calculate var{Oe(f)} for 
values of λm down to ≈10-30 to see if it appears to be converging to a finite number for any frequency.  A movie of 
var{Oe(f)} as a function of the upper limit of the summation in Eq.(3) is shown in Fig. 3.  A key property seen in this 
movie is that var{Oe(f)} does not seem to be converging to a finite value for any frequency, even those inside the 
measurement bandwidth, although the rate of increase of var{Oe(f)} inside the measurement bandwidth is 
significantly less than outside.  Because of this fact, it appears that the estimator given by Eq.(2) can provide an 
unbiased estimate of the object spectrum at any frequency only at the cost of an infinite variance. 

The conclusion that an unbiased estimate of a support-constrained object’s Fourier spectrum at any frequency has 
infinite variance was based upon a specific estimator (i.e., Eq.(2)).  It is natural to wonder if an alternate estimator 



exists that can produce an unbiased estimate of an object’s Fourier spectrum with finite variances for at least some 
frequencies.  To generate an algorithm-independent answer, the next section uses a CRB approach to calculate the 
variances of any unbiased estimate of a support-constrained object’s Fourier spectrum. 

3.  Cramér-Rao Bounds 

In this section, an algorithm-independent approach for calculating a particular set of lower bounds to the variances of 
any unbiased estimate of O(f) is employed.  These lower bounds, called CRBs [14], are the diagonal elements of the 
inverse of the Fisher information matrix (FIM) corresponding to O(f) and the conditional measurement probability 
density function (PDF) that is parameterized by O(f).  Our approach to calculating these CRBs is to first generate the 
FIM corresponding to o(x), then take its inverse, then transform this inverse into the inverse of the FIM corresponding 
to O(f), and then extract its diagonal elements.  Although the CRBs could have been calculated by creating the FIM 
for O(f) directly, it will be shown that the transformation process from the image-domain inverse FIM to the Fourier-
domain inverse FIM provides important insight into the properties of the Fourier-domain CRBs. 

The unbiased CRBs corresponding to a vector of parameters are lower bounds to the variances of any unbiased 
estimates of these parameters.  CRBs for a function of these parameters can be calculated when the Jacobian of the 
function with respect to the parameters is known.  Although CRBs are not necessarily achievable, in many cases they 
can be achieved and in other cases they can be approached closely.  To generate the CRBs for a vector of parameters, 
the PDF of the uncertainty in the measurements, conditioned on the parameter values, must be known.  For the 
imaging model of Eq.(1), this conditional PDF can be obtained from the noise PDF and the noise-free imaging model. 
 However, because CRB theory applies to a vector of random variables, not a stochastic process, Eq.(1) must be 
rewritten in a sampled data format.  For this reason, we replace the continuous variable x by a set of evenly-spaced 
locations covering the interval [-xo,xo] for some arbitrary number of locations.  Let α be a vector containing these 
locations and let y, θ, and η be vectors that contain the values of i(α), o(α), and n(α), respectively.  In addition, let H 
be the matrix associated with h(α) [15].  This permits rewriting Eq.(1) as a matrix-vector equation given by 

                                                              ηHθy += , (4) 

where the PDF of y conditioned on θ is given by 

                                                          ( ) ( )Hθyθy η −= f;f , (5) 

and fη(η-Hθ) is the PDF of η but with mean Hθ. 
As mentioned earlier in this section, the first step in calculating the CRBs for any unbiased estimate of O(f) is to 

calculate the FIM F(θ) corresponding to θ.  The element of F(θ) in the pth row and the qth column is given by 
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where ln denotes the natural logarithm and E[] is the expected value of the expression in the brackets.  For the 
imaging model of Eq.(4), Eq.(6) becomes 
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where the second equality in Eq.(7) is written in terms of h and the vector of x locations α rather than in terms of the 
elements of H to enhance the reader’s understanding of how we calculate F(θ).  Notice that each element of F(θ) is 
the inverse of the noise variance multiplying a discrete approximation to the integral of the product of two shifted 
versions of the PSF.  This discrete integration approximation must be accurate to greater than one part in 1030 to 
generate results comparable in accuracy to the noise variance calculations in Section 2.  One approach to obtaining 
this accuracy is to densely sample the support of the object;  however, that leads to large dimensions for F(θ) and 
prohibitively long calculations.  A second approach, and the one we implemented, is to carry out the full integration 
implied by the summation in Eq.(7).  We used a quad-precision Romberg integration routine based upon the 
Numerical Recipes’ qromb routine [16]. 

The second step is to calculate F(θ)-1.  Prior to the calculation, the eigenvalues of F(θ) were obtained to 
determine the stability of the inverse.  A set of eigenvalues for the same set of parameters as the results in Section 2 
(SBP of 40, vector size of 1024 elements, and an object support size of 161 elements) is plotted in Fig. 4 as a function 
of the FIM eigenvalue index.  From Fig. 4, it can be seen that the FIM eigenvalue behavior as a function of the FIM 
eigenvalue index is quite similar to the PSWF eigenvalue behavior as a function of the PSWF index;  specifically, the 
eigenvalues are close to one for values of the FIM eigenvalue index δ SBP and decay at approximately the same rate 
as do the PSWF eigenvalues for larger values  



 
Fig. 4.  A plot of the FIM eigenvalues. 

 

of the index.  This similarity can be explained by looking again at Eq.(7).  It can be seen that this equation is a 
discrete approximation to the convolution of a sinc function with itself, which results in a sinc function.  Since each 
row of the FIM is the previous row circularly-shifted by one pixel, the FIM is just a discrete version of the 
convolution operator in Eq.(1).  Thus the eigenvectors and eigenvalues of the FIM are just PSWFs and their 
eigenvalues.  This implies that, even though the FIM is invertible for any (finite) discretization of the interval [-xo,xo], 
the condition number of the FIM approaches infinity as the number of elements in α approaches infinity.  Thus 
unbiased estimates of o(x) with finite variances do not exist.  However, this does not necessarily imply that unbiased 
estimators of O(f) do not exist, at least for some set of frequencies.  The existence of unbiased estimators of O(f) 
depends upon the properties of the transformation of F(θ)-1 into the inverse of the FIM corresponding to O(f).  This is 
discussed next. 

The third (and final) step to calculating the desired CRBs associated with any unbiased estimate of O(f) is to 
transform F(θ)-1 into the inverse of the FIM corresponding to O(f) for any desired set of frequencies and extract the 
CRBs that are along its diagonal.  This transformation is achieved by premultiplying F(θ)-1 by G, the Jacobian of the 
Fourier transform operation for the desired set of frequencies, and postmultiplying by GT.  Because the eigenvalues of 
F(θ) converge to zero, and because computer calculations have finite precisions, the matrix product GF(θ)-1GT must 
be computed in a way to clearly illustrate at what frequencies, if any, unbiased estimates of O(f) can be obtained with 
finite variances.  Our approach is to calculate the sequence of matrix products {GFn(θ)√GT} as a function of n=1,2,…, 
where Fn(θ)√ is the pseudoinverse of F(θ) associated with the n largest eigenvalues of F(θ), and to examine the 
associated CRBs as a function of n.  We believe that, if the sequence of CRBs at a given frequency are a non-
converging and increasing function of n, it is plausible to assume that they approach infinity as n approaches infinity. 
 Because of the finite precision of computer calculations, our results are limited to approximately thirty orders of 
magnitude;  however, for all practical purposes, the CRBs are infinite at this point anyway. 

Based upon the discussion in the previous paragraphs, the unbiased CRBs for estimating O(f) as a function of the 
number of FIM eigenvalues included in the calculation of Fn(θ)√ are displayed in the movie in Fig. 5 for the same set 
of parameters as used for generating Fig. 4.  Each frame of the movie corresponds to adding one more eigenvalue to 
the calculation of  Fn(θ)√ than in the previous frame.  Two important observations can be made from this movie.  The 
first is that none of the CRBs appear to be converging to a finite value.  Clearly, the CRBs outside the measurement 
bandwidth are dramatically increasing in value as a function 

 
Fig. 5.  A movie of the CRBs for any unbiased estimate of any Fourier spectra for a SBP of 40 plotted as a function of 
frequency normalized to one at the edge of the measurement bandwidth.  Each movie frame corresponds to adding one 
additional eigenvalue to the pseudoinverse of the FIM.  The plots on the left are for all frequencies included in the 
calculations, while the plots on the right are a magnified version of the plots on the left for frequencies within the 



measurement bandwidth.  These plots are independent of the actual Fourier spectra under consideration because the 
measurement noise is signal independent. 

 

of n.  Even the CRBs inside the measurement bandwidth do not appear to be converging.  This slow increase in the 
CRBs inside the measurement bandwidth is undoubtedly due to the “leakage” of the large CRB values outside the 
measurement bandwidth into the measurement bandwidth brought about by the Fourier-domain correlations enforced 
by the support constraint [17].  The second observation is that the CRB plots in Fig. 5 are remarkably similar to the 
noise variance plots of Fig. 3, as expected, based upon the discussion of Fig. 4. 

Because of the preceding CRB analysis as well as the results in Section 2, it seems clear that no unbiased estimate 
of O(f) for any superresolved frequency is possible with finite variance.  Because values of O(f) inside the 
measurement bandwidth are available from the measurement directly, they can be estimated in an unbiased manner 
with finite variances merely by taking as their estimates the measurement values themselves.  However, no unbiased 
superresolution with finite variance is possible.  For this reason, biased estimators are explored in the next section, 
leading to the concepts of primary and secondary superresolution. 

4.  Primary superresolution 

Although unbiased superresolution with finite variances is not achievable, in this section it is shown that essentially 
unbiased superresolution with finite variances is achievable.  Because biases are a function of the estimator, first a 
PSWF-based estimator is proposed and its use justified.  Next, a quantitative definition of the phrase “essentially 
unbiased” is derived, and the primary superresolution component of the superresolved spectrum is defined as that 
portion that is essentially unbiased.  Finally, some properties of primary superresolution are presented. 

To explore biased superresolution, an estimator must be specified.  We choose to use a finite-summation version 
of the PSWF-based inverse problem formulation in Eq.(2) for three reasons.  The first is that, for any finite upper 
limit M to the sum in Eq.(2), the PSWFs have the most energy in the measurement bandwidth of any basis set [18].  
The benefit this brings to the inverse problem can be seen from Eq.(3), where it is shown that the noise variances are 
inversely proportional to the PSWF eigenvalues.  Because these eigenvalues are the energies of the PSWFs inside the 
measurement bandwidth, the noise levels in the superresolved spectrum for any set of M basis functions are 
minimized by using PSWFs as the basis set.  The second reason is that the similarities between the pseudo-inverse-
based CRBs shown in Fig. 5 and the variances for this estimator shown in Fig. 3 imply that the PSWF-based 
estimator is in some sense qualitatively optimal.  The third reason is that a closed-form solution to the inverse 
problem permits straightforward analysis of the bias properties of superresolution. 

To begin the analysis, consider Eq.(2).  Clearly the bias properties of this (and any other) estimator are a function 
of the object being estimated.  However, if the biases in the superresolved spectrum produced by this estimator could 
be characterized in a way that is independent of the object being estimated, the result would be more general and thus 
more useful.  Such a characterization is possible and is derived next based upon the frequency behavior of the 
PSWFs.  Because the estimator in Eq.(2) generates an estimate of O(f) using linear combinations of PSWFs, it 
follows that PSWFs with minimal energy at a given frequency contribute little to Oe(f) at that frequency.  In addition, 
the movie of the PSWFs in Fig. 1 shows that the energies of superresolving PSWFs are negligible in a connected 
region outside of but adjacent to the measurement bandwidth, and that the size of this region is an increasing function 
of the PSWF index.  The combination of these two facts implies that the bias at a given superresolved frequency is a 
function of the energies at that frequency contained in PSWFs not included in the summation in Eq.(2) and that this 
bias is a decreasing function of the summation upper limit.  At a given superresolved frequency, if the energies of the 
PSWFs not included in the estimator are negligible, the superresolved spectrum at this frequency can be said to be 
essentially unbiased. 

To quantify this discussion, the sums of the energies of the PSWFs included in the inverse problem are calculated 
as a function of superresolved frequency and PSWF index upper limit.  To present the results with increased clarity, 
these sums were divided by the total energy of the PSWFs at each superresolved frequency to show the fraction of 
energy included.  The results of these calculations are shown in the movie in Fig. 6, where each frame of the movie is 
for a given superresolved frequency.  The PSWFs used for this movie are the PSWFs used to generate the movie in 
Fig. 1, but the general shapes of the curves in Fig. 6 are similar for all SBPs.  The impact resulting from the fact that 
the PSWFs are not identical for all SBPs will be discussed later in this section.  Notice that the PSWF energy included 
in the inverse problem for a given superresolved frequency is essentially zero for low values of the PSWF index, then 
increases rapidly as a function of PSWF index and asymptotes to one.  The plots clearly show a “knee in the curve” 
that is arrived at when approximately 98% of the PSWF energy is included.  For this reason, we call the superresolved 
spectrum essentially unbiased when more than 98% of the total PSWF energy is included in the estimation of the 
object’s spectrum at that point.  Although the 98% point is somewhat arbitrary, the conclusions to be drawn from this 
definition of primary superresolution are relatively insensitive to the exact percentage used in the definition. 

Some properties of primary superresolution will now be discussed.  First, as noted previously, the maximum 
spatial frequency where primary superresolution is achieved is an increasing function of the maximum PSWF index 
value allowed in the inverse problem.  Because the maximum index value chosen is a function of the data SNRs due 
to the noise amplification process described by the summation in Eq.(3), this indicates that the amount of primary 
superresolution is a function of the data SNRs.  Additional properties of primary superresolution can be seen by 
examining Fig. 7, where the amount of primary superresolution is plotted as a function of the inverse of the square 



root of the PSWF eigenvalues.  As noted in the discussion following Eq.(3), the SNRs of the estimated Fourier 
spectrum are related to the inverses of the square roots of the PSWF eigenvalues, so Fig. 7 shows the amount of 
primary superresolution possible as a function of the recovery SNR.  The vertical axis of Fig. 7 is the amount of 
primary superresolution achieved and is expressed in terms of the number of degrees of freedom added to the image 
reconstruction.  In this context, a degree of freedom refers to the classical sampling degree of freedom that is defined 
as the inverse of two times the maximum frequency included in the image reconstruction [8]. 

  

 

 
Fig. 6.  A movie of the total energy of the PSWFs included in the reconstruction process (normalized to one) as a function of 
the PSWF index for a SBP of 40.  The dotted line corresponds to a value of 0.98.  Each frame of the movie corresponds to a 
different superresolved frequency as indicated in the movie. 

 
 
 

 
Fig. 7.  Plots of the increases in the sampling degrees of freedom in superresolved reconstructions brought about by including 
primary superresolution spectra.  The dot-dash line is for a SBP of 1.27, the dashed line is for a SBP of 10 , the solid line is 
for a SBP of 20, and the dotted line is for a SBP of 40. 

 
Several additional properties of primary superresolution can be deduced from Fig. 7.  The first is that, for SBPs 

τ10, the amount of primary superresolution is essentially independent of the SBP.  In other words, this means that 
primary superresolution is additive in the sense that, regardless of the object support size or the size of the Fourier-
domain measurement bandwidth, as long as the SBP is not on the order of one, the amount of primary superresolution 
possible is independent of the SBP and adds degrees of freedom.  The additive nature of superresolution has been 
discussed previously [19], [20].  The second observation is that the number of degrees of freedom added is a 
logarithmic function of the data SNR, a conclusion also reached previously by a number of researchers [1], [21].  The 



third observation is surprising, however.  Notice that the amount of primary superresolution possible for poorly-
resolved objects (i.e., for objects whose SBPs are on the order of one) is less than that possible for well-resolved 
objects.  This conclusion apparently contradicts previous results [1].  We note that the results in [1] are in terms of the 
average total superresolution possible, not just primary superresolution;  however, it will be shown in Section 5 that 
less superresolution is possible for poorly resolved objects than for well-resolved objects even when the total amount 
of superresolution is considered.  The apparent contradiction between our results and the results in [1] is resolved by 
clarifying how superresolution is measured.  We measure superresolution in terms of the number of degrees of 
freedom added to the reconstructed object.  If, however, superresolution is viewed in terms of the percentage increase 
in the number of degrees of freedom, as is done in [1], the increase in resolution for poorly-resolved objects is much 
greater than for well-resolved objects because poorly-resolved objects start out with very little information content.  
We argue that the best way to view primary superresolution is in terms of adding degrees of freedom, rather than in 
terms of percentage increase in the number of degrees of freedom, because primary superresolution is an inherently 
additive phenomenon.  In the next section, where secondary superresolution is explored, it will be shown that an 
additive degrees-of-freedom approach is also an appropriate way to view superresolution in the interior of the support 
region;  however, the definition of degree of freedom changes.  At the edges of the support region, secondary 
superresolution will be shown to be a function of the SBP and thus not additive. 

5.  Secondary superresolution 

The concept of secondary superresolution is discussed in this section and its properties are compared and contrasted 
with the properties of primary superresolution.  The amount of superresolution possible when including both the 
primary and secondary components of the superresolved spectrum is evaluated using a PSWF-based degrees-of-
freedom approach.  It is shown that secondary superresolution is spatially variant with significantly higher resolutions 
possible at the edges of the support region as compared to interior to the support region. 

Secondary superresolution is defined as all of the superresolved spectrum that is not essentially unbiased.  
Another way to express this fact is to call secondary superresolution either biased or incomplete.  For this reason, the 
classical degrees-of-freedom relationship relating the number of independent segments in the image domain to the 
maximum frequency included in the reconstruction process no longer holds.  To illustrate this fact, consider the 
superresolved Fourier spectra of a simulated 1-D triple star shown in Fig. 8.  The triple star was created in a 1024 
element vector and consists of three equal-magnitude point sources located at elements 437, 512, and 552.  The 
support region used for the calculations was [432,592].  The true Fourier amplitudes are plotted along with the 
reconstructed Fourier amplitudes using Eq.(2) with an upper limit to the summation of 46.  The PSWFs from Fig. 1 
were used for this reconstruction.  Because these PSWFs were created using a SBP of 40, the upper summation limit 
of 46 means that six superresolving PSWFs were included in the reconstruction process.  Although the data in Fig. 8 
are noise free, including six superresolving PSWFs corresponds to assuming a data SNR of approximately100. 

Notice that the region of primary superresolution is indeed essentially unbiased, while the region of secondary 
superresolution is strongly biased.  Although the normalized frequency axis in Fig. 8 extends only to twice the 
measurement bandwidth, the superresolved Fourier  

 
Fig. 8.  Plots of the Fourier amplitudes of a triple star for the parameters listed in the text.  The solid line is a plot of the true 
Fourier amplitudes and the dotted line corresponds to a reconstruction of the true Fourier amplitudes using Eq.(2) with an 
upper limit of 46 and a SBP of 40.  The frequency axis is normalized to one at the edge of the measurement bandwidth, and 
the dashed line indicates the upper boundary of the primary superresolution region. 

 

spectra is not bandlimited because the structure of superresolving PSWFs is that of decaying sinusoids.  The classical 
degree-of-freedom model states that the number of degrees of freedom in the image is equal to 4xofs, where fs is the 



largest frequency included in the image reconstruction.  Because fs=∞ for any reconstruction where superresolving 
PSWFs are  included, the classical degree-of-freedom approach states that there also are an infinite number of degrees 
of freedom in the reconstruction.  Clearly this is in error.  Thus the classical degree-of-freedom model is not valid to 
characterize the resolution properties of secondary superresolution.  An alternate model must be used. 

It has been shown previously that a PSWF of index m has m zeros in the support region used to generate the 
PSWFs [9].  Based upon this fact, it has been proposed that the resolution provided by the mth PSWF can be 
characterized by the average distance between these zeros [1], [6].  Such a definition of resolution agrees with the 
classical Rayleigh resolution limit when m is equal to the SBP.  Based upon this definition of resolution, the number 
of degrees of freedom in a reconstructed image using PSWFs is equal to one plus the number of PSWFs included in 
the reconstruction.  This definition is consistent with the general concept of resolution in the classical sense and does 
not predict infinite resolution when including an infinite number of frequencies as is the case for the sampling degree 
of freedom definition. 

Using the PSWF definition of degrees of freedom, the average increase in the resolution of a reconstruction 
brought about by including both the primary and secondary superresolution components in the reconstruction process 
is plotted in Fig. 9 as a function of the inverse of the square root of the PSWF eigenvalue and for several values of the 
SBP.  There are several properties of the increased degrees of freedom brought about by including secondary 
superresolution in the reconstruction process worth noting.  The first is that poorly-resolved objects still benefit the 
least from the superresolution process as measured by increased degrees of freedom.  The second is that the amount of 
increase in degrees of freedom is no longer independent of the SBP for SBP τ 10.  In fact, the number of degrees of 
freedom in a superresolved reconstruction of an object is an increasing function of the number of degrees of freedom 
in the measurement.  Thus the inclusion of secondary superresolution  

 
Fig. 9.  Plots of the increases in the PSWF-defined degrees of freedom averaged over the entire support region brought about 
by including both primary and secondary superresolution in the reconstruction process.    The dot-dash line is for a SBP of 
1.27, the dashed line is for a SBP of 10, the solid line is for a SBP of 20, and the dotted line is for a SBP of 40.  The asterisks 
denote values calculated in [1] for a SBP of 1.27. 

 

makes the superresolution process more than additive in terms of our definition of additive superresolution given in 
Section 4.  For example, primary superresolution produces one additional degree of freedom when the data SNR is 
100 for all SBP values τ 10, while the combination of primary and secondary superresolution produces four additional 
degrees of  freedom when the SBP is 10, and five additional degrees of freedom when the SBP is 40.  This also 
indicates that secondary superresolution is a valuable component of the overall superresolution process.  Finally, we 
have plotted in Fig. 9 the predicted increase in degrees of freedom found in [1], Table 1, for a SBP of 1.27 in order to 
compare our results to theirs.  Notice the good agreement, especially considering that the results in [1] have a 
precision of only one significant digit. 

However, defining the resolution of a given superresolving PSWF in terms of the average spacing of its zeros 
across the entire support region implies that the zeros are evenly spaced throughout the support region.  As can be 
seen for a representative superresolving PSWF in Fig. 10, this is not the case.  The zeros are relatively evenly spaced 
in the center of the support region, but their spacings decrease rapidly as one approaches the edge of the support.  
This implies that superresolving PSWFs produce higher resolutions near the edges of the support region and lower 
resolutions away from the edges of the support region than predicted by Fig. 9.  To take the space-dependent 
resolution properties of superresolving PSWFs into account, the support region was divided into two regions, the 
center 75% and the remaining 25% at the edges.  The average amount of total superresolution achieved in the center 
75% of the support region is plotted in Fig. 11 and can be seen to be significantly less than predicted by Fig. 9 for the 
entire support region.  To compare directly the secondary superresolution results to the original degrees of freedom in 



the image, the results plotted in Fig. 11 correspond to the increase in the number of degrees of freedom that would 
occur in the entire support region if the resolution calculated using the center 75% of the support region is the same 
throughout the entire support region.  In addition, notice that the amount of total superresolution is essentially 
independent of the SBP for SBP τ 10, just as is the case for primary superresolution, and thus is additive by our 
definition.  As before, the amount of total superresolution achievable is less  

 
Fig. 10.  Plot of the PSWF with index 65 for a SBP=40 demonstrating that the spacings of zeros for superresolving PSWFs in 
the support region decrease as the location in the support gets close to the support boundaries.  Notice that the zeros are 
relatively evenly spaced in the center 75% of the object support. 

 

 

 
Fig. 11.  Plots of the increases in the PSWF-defined degrees of freedom averaged over the center 75% of the support region 
brought about by including both primary and secondary superresolution in the reconstruction process.    The dot-dash line is 
for a SBP of 1.27, the dashed line is for a SBP of 10, the solid line is for a SBP of 20, and the dotted line is for a SBP of 40.   
The vertical axis is the number of degrees of freedom that would be added to the entire support region if the resolution 
increase calculated in the center of the support region is the same throughout the support region. 



 
Fig. 12.  Plots of the increases in the PSWF-defined degrees of freedom averaged over the 25% of the support region located 
at its edges brought about by including both primary and secondary superresolution in the reconstruction process.    The dot-
dash line is for a SBP of 1.27, the dashed line is for a SBP of 10 , the solid line is for a SBP of 20, and the dotted line is for a 
SBP of 40.  The vertical axis is the number of degrees of freedom that would be added to the entire support region if the 
resolution increase calculated at the edges of the support region is the same throughout the support region. 

 

for SBP values on the order of one.  A difference from the primary superresolution results is that the amount of 
superresolution is a little larger when including secondary superresolution in the reconstruction process. 

The average amount of total superresolution achieved at the edges of the support region for the remaining 25% of 
the support region is shown in Fig. 12.  Notice the large increase in the numbers of degrees of freedom at the edges of 
the support.  As for the results in Fig. 11, the numbers in Fig. 12 correspond to the increase in the degrees of freedom 
that would occur in the entire support region if the resolution at the edges of the support region is the same throughout 
the support region. 

To put the primary and secondary superresolution results in perspective, it is useful to consider the relative 
percentage increases in resolution for a specific case.  To this end, consider an image that has a SBP of 40.  If the data 
SNR allows the use of all the PSWFs whose eigenvalues are greater than 10-4 (that is, if the data SNR ≈ 100), the 
percent increase in the resolution throughout the entire support region due to primary superresolution would be 2.5% 
because primary superresolution only provides a single additional degree of freedom.  The resolution increase 
including both primary superresolution and secondary superresolution in the center region of the support would be 
5%, a factor of two increase over what primary superresolution provides, but still small.  Finally, at the edges of the 
support region, the resolution increase including both primary and secondary superresolution would be 30%, a large 
and noticeable increase.  To demonstrate visually the impact of these numbers, three noise-free reconstructions of the 
triple star whose Fourier amplitude spectrum is plotted in Fig. 8 are displayed in Fig. 13.  The first reconstruction uses 
just the Fourier data inside the measurement bandwidth, the second reconstruction uses both the measured Fourier 
data and the primary component of the superresolved spectrum, and the third reconstruction uses all the superresolved 
spectrum along with the measured Fourier data.  The two rightmost components of the triple star are contained inside 
the center 75% of the support;  as a result, the amount of  



 
Fig. 13.  Plots of reconstructions of the triple star whose Fourier amplitudes are shown in Fig. 8, where the solid line is a 
reconstruction using just the Fourier data inside the measurement bandwidth, the dashed line is a reconstruction using both 
the measured Fourier data and the primary superresolution part of the superresolved spectrum, and the dotted line is a 
reconstruction using the measured Fourier data and all of the superresolved spectrum. 

 

superresolution possible is predicted to be ≤ 5% for all three reconstructions and thus essentially negligible.  The 
reconstructions in Fig. 13 confirm this prediction.  However, the leftmost component of the triple star is near the edge 
of the support region and benefits from the increased resolution brought about by secondary superresolution.  As 
predicted by the plots in Fig. 7, the primary superresolution reconstruction of this component differs very little from 
the no-superresolution reconstruction.  However, as predicted by the plots in Fig. 12, the reconstruction that uses all 
the superresolved spectrum has an increased resolution of ~30%.  The increase in resolution is greater on the side of 
the component near the edge of the support as compared to the side nearer the center of the support because of the 
decreasing zero spacings of PSWFs as one moves toward the support boundaries.  Although the increased resolution 
is encouraging, it can be seen that the reconstruction using all the superresolved spectrum produces less accurate 
estimates of the relative magnitudes of the triple star components. 

6.  Discussion and Future Work 

The results in the preceding sections provide insight into the properties of superresolved spectra.  It was shown that 
these properties can be seen more clearly if the superresolved spectrum region is decomposed into two separate 
regions.  The first region is connected to and outside of the measurement bandwidth and is the region where the 
essentially unbiased, or primary, component of the superresolved spectrum resides.  The second region is outside of 
both of these regions and connected to the primary superresolution region and is the region where the biased, or 
secondary, component of the superresolved spectrum resides.  Although the secondary superresolution region is 
theoretically infinite in size, the data SNR limits it to be finite. 

Primary superresolution is additive in nature in that the amount of primary superresolution is independent of the 
SBP as long as the SBP τ 10 and depends only on the data SNR.  For SBPs on the order of one, the amount of 
primary superresolution for a given data SNR is less than for larger values of the SBP.  The increase in resolution in 
the image domain is constant across the support region.  In addition, for objects with SBPs τ 10, the amount of 
primary superresolution achievable with realistic data SNRs is on the order of a few percent or less. 

Secondary superresolution produces increases in resolution in the support region that are a function of the 
location in the support region.  Across most of the support region away from its edges the resolution increase due to 
secondary superresolution is essentially constant and has many of the same properties as primary superresolution (i.e., 
the amount of resolution increase is independent of the SBP when the SBP  τ 10, and  for smaller SBPs, the amount of 
resolution increase is less).  In addition, although secondary superresolution in the interior of the support region adds 
more resolution to the primary resolution results, it is still on the order of a few percent for data with SBPs τ 10 and 
data SNRs ≈ 100.  These properties are due to the portion of the superresolved spectrum in the (small) region of the 
secondary-superresolution Fourier spectrum adjacent to the primary superresolution region.  However, the amount of 
resolution increase at the edges of the support region due to secondary superresolution is much greater than in the 
interior of the support region.  For example, for data with a SBP of 40 and an SNR ≈ 100, the resolution increase 
averaged over the edges of the support region is ~30%.  These higher resolutions are associated with the long “tails” 
of the secondary superresolution spectrum in the Fourier domain. 

Based upon these properties of primary and secondary superresolution, it is clear that both schools of thought 
regarding the achievability of meaningful superresolution can be correct depending upon the metric used to quantify 
the phrase “meaningful superresolution”.  If the metric is the obtainment of more than a few percent resolution 
increase across the entire support region for data with realistic SNRs and SBPs  τ 10, meaningful superresolution is 



not possible.  If the metric is obtaining more than a few percent resolution increase at the edges of the support for any 
SBP, meaningful superresolution is possible. 

This latter point is worth emphasizing.  It is well known that the human visual system keys off of edges in an 
image.  Therefore, if the object under consideration is an object with well-defined edges on a black background (such 
as is common in astronomical imaging), meaningful superresolution appears to be quite possible and worth pursuing.  
This possibility has been noted previously [7].  On the other hand, if the edges of interest are interior to the object 
support, little edge enhancement is possible. 

The results presented in this paper have been independent of the actual object being imaged and superresolved.  It 
is important to determine how effective primary and secondary superresolution are in improving the resolution of 
images in terms of looking at actual examples.  Our initial results (Fig. 13) indicate that using secondary 
superresolution in the reconstruction process can increase resolution at the edges of the support region but at the cost 
of decreased radiometric accuracy.  In addition, our results only included noise in the sense of limiting the number of 
PSWFs that are included in the reconstruction.  We expect that noisy data will require additional constraints in the 
reconstruction process such as Fourier-domain regularization.  For these reasons, we are continuing our research into 
the image domain effects of secondary superresolution and will report on the results a future publication. 
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